“Being completely circular by 2050” that is the goal for the Dutch economy. The transition towards the circular and biobased economy for energy and materials is essential to reach that goal. Sustainably produced materials based on renewable sources like biomass should be developed.
One of the industries which recognizes the need for transition is the building industry. Currently, there are a couple of biobased building concepts available which claim to be more than 95% biobased. Since the current resins and adhesives, used to produce panel boards (like cross laminated timber (CLT)), are all produced synthetically, one of the missing links for the building industry to become 100% biobased are biobased resins and adhesives (and binders). In literature, there are several solutions described for resins/adhesives/binders which are based on the biomolecules lignin and cellulose which are abundantly present in fibrous biomass, but these products are not (yet) available on the market.
At the same time, there are several fibrous biomass side streams available for which higher added value applications are demanded. These side streams are perfect sources of lignin and cellulose and are, therefore, very suitable sources to form the basis for biobased resins/adhesives/binders. However, they need modification to obtain the desired functionalities.
The problem statement of this project, based on the request for valorization of fibrous side streams and the need for biobased building materials, is “How can we valorize fibrous biomass (side streams) into biobased building applications.” This problem statement is translated into the research goal. The aim of this research is to develop a biobased resin, adhesive or binder for the production of panel boards based on the side streams of fibrous/lignocellulosic biomass which meets the requirement of the building industry with respect to VOC emissions, and water resistance so that it contributes to a healthy living environment.