Zoekresultaten

Producten 307

product

The relation between clinical and objective gait scores in clubfoot patients with and without a relapse

Background Objective gait analysis that fully captures the multi-segmental foot movement of a clubfoot may help in early identification of a relapse clubfoot. Unfortunately, this type of objective measure is still lacking in a clinical setting and it is unknown how it relates to clinical assessment. Research question The aim of this study was to identify differences in total gait and foot deviations between clubfoot patients with and without a relapse clubfoot and to evaluate their relationship with clinical status. Methods In this study, Ponseti-treated idiopathic clubfoot patients were included and divided into clubfoot patients with and without a relapse. Objective gait analysis was done resulting in total gait and foot scores and clinical assessment was performed using the Clubfoot Assessment Protocol (CAP). Additionally, a new clubfoot specific foot score, the clubFoot Deviation Index (cFDI*), was calculated to better capture foot kinematics of clubfoot patients. Results Clubfoot patients with a relapse show lower total gait quality (GDI*) and lower clinical status defined by the CAP than clubfoot patients without a relapse. Abnormal cFDI* was found in relapse patients, reflected by differences in corresponding variable scores. Moderate relationships were found for the subdomains of the CAP and total gait and foot quality in all clubfoot patients. Significance A new total foot score was introduced in this study, which was more relevant for the clubfoot population. The use of this new foot score (cFDI*) besides the GDI*, is recommended to identify gait and foot motion deviations. Along with clinical assessment, this will give an overview of the overall status of the complex, multi-segmental aspects of a (relapsed) clubfoot. The relationships found in this study suggest that clinical assessment might be indicative of a deviation in total gait and foot pattern, therefore hinting towards personalised screening for better treatment decision making.

PDF

The relation between clinical and objective gait scores in clubfoot patients with and without a relapse
product

An accountability challenge

More than 80 % of all information in an organization is unstructured, created by knowledge workers engaged in peer-to-peer networks of expertise to share knowledge across organizational boundaries. Enterprise Information Systems (EIS) do not integrate unstructured information. At best, they integrate links to unstructured information connected with structured information in their databases. The amount of unstructured information is rising quickly. Ensuring the quality of this unstructured information is difficult. It is often inaccessible, unavailable, incomplete, irrelevant, untimely, inaccurate, and/or incomprehensible. It becomes problematic to reconstruct what has happened in organizations. When used for organizational policies, decisions, products, actions and transactions, structured and unstructured information are called records. They are an entity of information, consisting out of an information object (structured or unstructured) and its metadata. They are important for organizational accountability and business process performance, for without them reconstruction of past happenings and meaningful production become an impossibility. Organization-wide management of records is not a common functionality for EIS, resulting in [1] a fragmentation in the management of records, where structured and unstructured information objects are stored in a variety of systems, unconnected with their metadata; [2] a fragmentation in metadata management, leading to a loss of contextuality because metadata are separated from their information objects; and [3] a declining quality or records, because their provenance, integrity, and preservation are in peril. Organizational accountability is based on records and their context to reconstruct the past. Because records are not controlled by EIS, they can only marginally be used for accountability. The challenge for organizational accountability is to generate trusted records, fixed and contextual information objects inseparately linked with metadata that capture context to regain evidential value and to allow for the reconstruction of the past. The research question of this paper is how to capture records and their context within EIS to regain the evidential value of records to allow for a more robust organizational accountability. To find an answer, we need to pay attention to the concept of context, on how to capture context in metadata, and how to embed and manage records in EIS.

PDF

An accountability challenge
product

Changes in kinematics and work physiology during progressive lifting in healthy adults

CC-BY Applied Ergonomics, 2021, March https://www.journals.elsevier.com/applied-ergonomics Purpose: To analyze progression of changes in kinematics and work physiology during progressive lifting in healthy adults.Methods: Healthy participants were recruited. A standardized lifting test from the WorkWell Functional Capacity Evaluation (FCE) was administered, with five progressive lifting low series of five repetitions. The criteria of the WorkWell observation protocol were studied: changes in muscle use (EMG), heart rate (heart rate monitor), base of support, posture and movement pattern (motion capture system). Repeated measures ANOVA’s were used to analyze changes during progressive workloads.Results: 18 healthy young adults participated (8 men, 10 women; mean age 22 years). Mean maximum weight lifted was 66 (±3.2) and 44 (±7.4) kg for men and women, respectively. With progressive loads, statistically significant (p < 0.01) differences were observed: increase in secondary muscle use at moderate lifting, increase of heart rate, increase of base of support and movement pattern changes were observed; differences in posture were not significant.Conclusions: Changes in 4 out of 5 kinematic and work physiology parameters were objectively quantified using lab technology during progressive lifting in healthy adults. These changes appear in line with existing observation criteria.

PDF

Changes in kinematics and work physiology during progressive lifting in healthy adults

Personen 1

persoon

Jorrit Thijn

Jorrit Thijn

Projecten 3

project

MotionVibe: Haptische Wearable met Bewegingsanalyse

Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance​. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners​. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.

Lopend
project

PLAYSAFE: Pathways for Longitudinal ACL Injury Risk Assessment in Female Footballers

In societies where physical activity levels are declining, stimulating sports participation in youth is vital. While sports offer numerous benefits, injuries in youth are at an all-time high with potential long-term consequences. Particularly, women football's popularity surge has led to a rise in knee injuries, notably anterior cruciate ligament (ACL) injuries, with severe long-term effects. Urgent societal attention is warranted, supported by media coverage and calls for action by professional players. This project aims to evaluate the potential of novel artificial intelligence-based technology to enhance player monitoring for injury risk, and to integrate these monitoring pathways into regular training practice. Its success may pave the way for broader applications across different sports and injuries. Implementation of results from lab-based research into practice is hindered by the lack of skills and technology needed to perform the required measurements. There is a critical need for non-invasive systems used during regular training practice and allowing longitudinal monitoring. Markerless motion capture technology has recently been developed and has created new potential for field-based data collection in sport settings. This technology eliminates the need for marker/sensor placement on the participant and can be employed on-site, capturing movement patterns during training. Since a common AI algorithm for data processing is used, minimal technical knowledge by the operator is required. The experienced PLAYSAFE consortium will exploit this technology to monitor 300 young female football players over the course of 1 season. The successful implementation of non-invasive monitoring of football players’ movement patterns during regular practice is the primary objective of this project. In addition, the study will generate key insights into risk factors associated with ACL injury. Through this approach, PLAYSAFE aims to reduce the burden of ACL injuries in female football players.

Lopend
project

Promotiebeurs Joris Weijdom

The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes

Afgerond