Dienst van SURF
© 2025 SURF
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
This paper analyzes the institutional context of maintenance purchasing in higher education. It aims to provide insights into the institutional complexities of smart maintenance purchasing in higher education institutes. In a case study, six external institutional fields and two internal institutional logics are identified. They create two types of institutional complexities that impede innovation if not treated correctly. Three ways are discussed to deal with those institutional complexities, 1) negotiating institutional field boundaries, 2) creating new institutional logics and practices, and 3) implementing institutional changes.
MULTIFILE
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
Het doel is het creëren van een living lab ter ondersteuning van de verduurzaming van de bevoorradings-, retour- en afvalstromen van ziekenhuizen in de regio Nijmegen. Het living lab wordt zowel een fysieke locatie, als een aanpak, waarin gebruikers, kennisinstellingen, publieke en private organisaties gezamenlijk multidisciplinair onderzoek doen, experimenteren en innoveren in een real-life context ter ondersteuning van de volgende drie hoofddoelen: (1) Reductie van de ecologische voetafdruk, (2) Professionalisering en talentontwikkeling van medewerkers van de zorginstellingen en studenten, (3) Verlaging van integrale kosten en verhoging van de kwaliteit door slimmer organiseren.